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Pixel Detectors for Hadron Colliders

K. Einsweiler, LBNL

Overview of Goals and Requirements:
•High luminosity colliders present unique requirements of radiation hardness, high 

occupancy, and precise timing 

•Hybrid technology is presently the only feasible approach

Major technical challenges (ATLAS, BTeV, CMS):
•Sensors

•Electronics

•Interconnections, mechanics and cooling

Future directions:
•Improvements in electronics

•Improvements in interconnection technology

Use ATLAS Pixel Detector as source of many examples...
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Hadron Colliders and Pixel Detect
Tracking issues in hadron collider experimen

•Most high PT particles produced in hadron colliders are asso
leading to challenging track finding problems (high local par

•Much of the interesting physics benefits greatly from the rec
quark and lepton decays (especially B’s, cτ ≈500µ for B-had
goals include excellent impact parameter resolution.

•Tracking in solenoidal field implies fitting helices with 5 track
curvature, phi, and dip angle, plus distance of closest appro

•Low material budgets (1-2% X0 per measurement layer) are
multiple scattering in critical few GeV region.

•More ambitious goals include use of precise silicon tracking 
level triggers (e.g. CDF Run 2 impact parameter trigger, pro

•Modern collider experiments all use Silicon Trackers to addr
Presently installed systems rely on fine-pitched strips (50-10
point resolutions of 10-15µ per measurement plane in one c

•First example of precision vertexing in a hadron collider was
installed in CDF in 1992. This provided the first vertex-based
hadron collider, leading to evidence for top quark in 1994, a
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First Evidence for t-quark in Tevatron Run 1a 
•With significant input from SVX b-tagging capability, CDF sh

consistent with t-quark mass of 175 GeV using inital Run 1a

•Clear observation of detached vertices in small number of ev

•Discovery of t-quark followed with greater statistics in Run 1
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 High Luminosity:
•The physics potential of hadron collider experiments is often

collision rates that the detectors can reconstruct. 

•In the search for rare decays or weak processes such as Hig
maximum tolerable luminosity is critical.

High Occupancy and Precise Timing:
•Hadronic total cross-sections are always large (σ(tot) at LHC

luminosity means very high particle rates (LHC at 1034 has 
crossing, with roughly 1000 charged particles within tracking

•Operating at the highest possible luminosity requires resolvin
time structure (LHC uses 25ns bunch crossing interval).

Radiation Hardness:
•High particle fluences in hadron colliders imply very significa

electronics and sensors (LHC innermost layer sees more th

•Measuring heavy quarks with high precision and largest pos
(hadronic B-factories) requires placing vertexing extremely 
region in the forward direction, and also requires extreme ra
(inner edge of BTeV pixel planes also sees about 10MRad/y
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Pattern Recognition and Triggering:
•Pixels provide individual space point measurements with high

triggering and offline pattern recognition.

•H → bb event in ATLAS at zero luminosity and at design lum
(Precision hits shown for 0 < η < 0.7 only, TRT hits for z > 0

ATLAS Barrel Inner Detector
H→bb

–

b

b
–

ATLAS Barrel I
H→b

b
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What do Pixel Detectors for Hadron Collide
Many approaches to building pixelated partic

•Charge Coupled Devices (CCDs), either using commercial o
These are read out serially with no internal zero suppression
continuous sensitivity and high readout rate required for had

•Monolithic pixel detectors that detect charge created in the e
Original approach used custom electronics on high resistivit
very limited in circuitry which could be used. More recently, 
charge deposited in thin epitaxial layer present in modern d
processes. This signal arrives relatively slowly (100’s of ns?

•Hybrid pixel detectors, in which a separately optimized silico
commercial electronics chips are connected using flip-chip t
allows the design of a high-quality silicon sensor using appro
(oxygenated, high resistivity silicon), and the use of commer
CMOS electronics to implement complex, high-speed circui

•In this talk, focus purely on the hybrid solution and give exam
being used in three major hadron collider pixel detectors no
construction (ATLAS, BTeV, and CMS).

Basic building block of a hybrid pixel detecto
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Ingredients of a hybrid pixel modu
Hybrid pixel detector module is a multi-chip a

•Substrate consists of a carefully optimized rad-hard sensor. P
for pixels is to use n+ on n-bulk. This requires double-sided
implement the biassing and guard-ring on the back-side, bu
it can be operated partially depleted.

•Anywhere from 5-16 front-end chips are attached with fine pi
the sensor.  Typically, this requires 50-100µ pitches and 20µ
current commercial standards (IBM C4) of 100µ bumps on 2

•Front-end chips are connected together using a high density
typically a Kapton Flex circuit. An additional readout control
is normally used to coordinate the control and readout funct
chips.

•Fast serial links are then used to transfer clock, control, and
module.

•The result is an object that provides active coverage over a 
subdivided into roughly 50K detector elements, consumes s
power, and weighs only about 3 grams.
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Example of early ATLAS prototype Pixel Modu

•Active area is 10cm2, 46K channels, 16 FE on sensor substr
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Radiation effects on silicon sensors and mic
Sensors:

•Standard silicon sensors are made from high-resistivity silico
cm), which can be depleted with moderate bias voltages to 
charge deposited by ionizing tracks. Typical depletion voltag

are about 100V, and collection times for n+ implants (electro

•Under irradiation, defects are created in the silicon lattice. Th
related to ionizing dose, but to displacement damage where
around in the lattice. Displacement damage (also known as
energy loss) is tabulated in 1MeV neutron equivalents, usin
to correct for other particle types and energies. 

•These defects create leakage current at a rate which is now v
Leakage current has strong temperature dependence (a fac

•Additional p-type defects affect the depletion behavior, causi
bulk becomes p-bulk), and increasing the depletion voltage.
these latter defects as a function of time and temperature af
complex, with initial beneficial annealing (time constant of a
temperature), followed by so-called reverse annealing (time
at room temperature).

•Heavily irradiated sensors are operated cold to reduce leaka
suppress reverse annealing, typically range of -10C to 0C is
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Microelectronics:
•CMOS electronics devices operate by controlling carriers flow

channels, using gates separated by very thin oxide layers (5
significant source of radiation damage is ionization damage
(SiO2) layers used to isolate gates and to isolated transisto

•Bipolar devices are more complex, and suffer from both ioni
oxide layers and from displacement damage to the transisto

•Some strip applications use bipolar transistors in the front-en
ATLAS strip readout) to achieve optimal noise and speed pe
almost all silicon readout is done using pure CMOS process

•The traditional approach to rad-hard CMOS design involved
specialized foundries with “hardened” processes developed
applications. These processes have been 1.2µ or 0.8µ, with
Equivalent commercial processes, even with special layout t
tolerate radiation doses much beyond about 100KRad.

•However, it has been realized for some time that once the ga
thin enough (much less than 10nm thick), virtually all of the 
ionizing radiation will “anneal” extremely rapidly due to quan
effects, leading to intrinsically radiation-hard gate oxides. Th
processes were the first commercially available which opera
this regime, providing a new approach to radiation-hard elec
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The ATLAS Inner Detector (2T Solen
Outermost system uses gas-filled 4mm straw

• There are 420K electronics channels, and a TR radiator sup

Intermediate radii contain a silicon strip track
•Four barrel layers and 9 disk layers contain 61 m2 of silicon 

Innermost system is pixel tracker
•Three barrel layers and 3 disk layers contain 1.8 m2 of silico

Forward SCT

Barrel SCT

TRT

Pixel Detectors
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Pixels address many vital tracking issue
Radiation Damage:

•LHC radiation levels prohibit operation of silicon strip detecto
about 25cm. Limits arise from parallel noise from sensor lea
as signal loss from charge trapping and partial depletion of 

•Pixels reduce leakage and improve signal/noise ratio per ch
systems by their high segmentation. In ATLAS, expect 10Ke
lifetime. Leakage is expected to be about 30nA/pixel, and n
than 400e, for a lifetime dose accumulated by electronics of

sensors of 1015 1MeV neutron equivalent.

Occupancy and Timing:
•Small cell size (50µ x 300µ - 400µ) of pixel detector yields lo

more than 5x10-4 per pixel per crossing at 4-5cm radius. A 
have an occupancy at least 100 times larger.

•Timing is very challenging, and pixels have no advantage her
timewalk in the front-end (preamp and discriminator), where
threshold have additional delays due to the finite preamp ris
discriminator speed. Reaching values of 20ns for charges in
100Ke with a current budget of only about 20µA per pixel is
difficult, despite the relatively small detector capacitance.
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Performance (examples from ATLAS):
•Based on prototypes, simulations predict σ(rφ) ≈10µ and σ(z

•This leads to the following simulated impact parameter perfo

•Significant loss in resolution at low PT is due to material (abo

200 GeV muons

1 GeV muons

Transverse impact parameter resol
with pT = 1 and 200 GeV: now 

Main difference due to increase of b
B-layer radius: B-layer moved from

Dependence of the 
pT resolution on SCT 
and TRT geometries 
for muons with pT = 
200 GeV

( )
ϑsin

98
10�

p
p

T
T
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•And to the following simulated b-tagging performance (GEAN

•B-tagging performance is evaluated for 400GeV Higgs deca

non-b-quarks without pile-up. Studies done with full 1034 pil
rejection of u-jets deteriorates by about a factor of 2 for PT(j
stays the same for higher PT jets.

230 ± 25B-layer R = 4.13 cm

190 ± 20Insertable

Ru foRu for εb = 50%Layout

Rejection for u-jets vs efficiency for b-jets                    Ru for εb = 5
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ATLAS Pixel Detector
•System is based on three barrel layers and three disk layers,

over the inner detector tracking region of η<2.5.

•Physical size of system is roughly 1.6m long, with 0.2m radiu
at 5cm radius, and worst-case power consumption is about 
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Radiation in ATLAS Inner Detect
At small radii, where the pixel tracker lives, th
radiation dose is dominated by charged hadro
underlying events (true for all silicon layers in

•Fluence of charged hadrons through the ATLAS Inner Detec

at design luminosity. Outer layers see ≈1014/yr, inner layer s

R
(c

m
)



S n o w m a s s  P i x e l  C o u r s e  ,  J u l y  2 0 0 1

etectors for Hadron Colliders, July 11 2001    17

 columns of 160 

ital timewalk 
 critical capacitors.

inear Time-over-
gth using the 40MHz 

and and control 

ctor:
K. Einsweiler          Lawrence Berkeley National Lab
Pixel D

Module and electronics design:
•Electronics is based on a 50µ x 400µ pixel, arranged into 18

pixels each.

•Front-end chip contains DACs needed to adjust biassing, dig
correction, internal decoupling, and measurement circuit for

•Charge information is provided by using a preamplifier with l
Threshold (TOT), and measuring the discriminator pulse len
beam clock.

•A Module Controller Chip provides event building, and comm
functions for the module.

•Prototype module shown here includes temporary test conne
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The BTeV Pixel Detector (1.6T Dipo
•Detector is placed very close to interaction point, and consis

pixel modules, 0.6 m2, for a total of roughly 30M pixel chann
(+/- 6 mm) cut-outs for the beam to pass through.

•Special features include goal of performing complete first lev
secondary vertex reconstruction for every 132ns crossing (h

Ent
plac
mac
larg
orde
mat
inte
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•The trigger requirement implies moving all zero-suppressed 
detector (roughly 1 TB/sec data rate !)

•Many individual modules are supported on an L-shaped sup
provides cooling. Two plates make up a plane that surround

•Individual modules are mounted on two sides of a carbon-ba

structure, and consist of roughly 5 readout chips on a comm
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Module and electronics design:
•Electronics based around a similar pixel to ATLAS (50µ x 40

prototyping of sensors. 

•Design uses 3-bit ADC to digitize charge information directly
Presently, all 8 thresholds are individually programmable to 
definition of the ADC values.

•Since this detector forms the basis for the first level trigger, a
transmitted off-chip. The plan is to use LVDS and wires to tr
small distance into a lower radiation area, and then to trans
links.

•Modules are made up of a single row of 5-7 FE chips connec
interconnect, built from Kapton. Readout controller chips are
send high-speed data streams off detector.
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The CMS Pixel Detector (4T Soleno
•The CMS pixel detector is a two layer system, with two barre

radius, and two disks at each end.

•A third layer would be added later at a larger radius of 11cm

•There are about 45M pixels in the two layer system:

•The system operates in a 4T magnetic field (initial Lorentz an
barrel, turbined layout in the disks). It relies on 150µ x 150µ
significant charge sharing to provide good resolution in both
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Module and electronics design:
•The front-end produces an analog signal representing the in

signal is stored in the chip periphery and transmitted over a
for digitization in the off-detector electronics.

•Each Readout Chip (ROC) contains 52 rows of 53 pixels eac
constructed by bump-bonding 16 ROCs to the sensor subst
transmitted off the module using two control and driver chip

silicon
base plate

Kapton 
hybridsensor

bumps readout
chips

readout chip

hybrid

signal
driver chip

signal/bias
cable

sensor

alignment
mark

silicon
base plate

filter
capacitors

token bit
manager chip

power cable

alignment
mark

Pixel Mo
66mm lo
with an a
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Major Technical Challenges
Sensors: critical issue is radiation hardness. 

•Use n+ in n-bulk design to allow partially depleted operation
The n+ implants require isolation to avoid shorting by electr
layer. Standard designs use high-dose p+ stop implants to i
produce high-field regions after significant irradiation, leadin

•ATLAS and BTeV use p-spray approach (uniform low-dose p
which is overcompensated by n+ pixel implants). This elimina

after irradiation to 1015 fluences. 

Fig� ��� Design detail of the bias grid in the second sensor prototype�

nitride

n

oxide

p-spray
lower dose

p-spray

metalisation

P-spray appro
implementation
bias net which
implants at a fi

This permits I/
wafer-testing a
implants from 
potential in cas
defects.
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•In order to maximize the signal after irradiation, detectors mu
highest possible bias voltage to deplete as much silicon as 
minimize trapping effects. ATLAS uses 600V, which then pro
power dissipation in sensors due to leakage current at end o

•The sensors must be kept cold to control leakage currents an
requiring optimization of mechanical structure for low tempe

•Coverage of regions between electronics chips on module re
attention. In simple hybrid case, ATLAS chose to extend pix
and to create additional “ganged” pixels above the top of the
provides coverage at cost of additional noise and occupanc
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Electronics:
•Radiation hardness has proven to be difficult to achieve. Initi

ATLAS and CMS was to use traditional rad-hard vendors (H
ATMEL/DMILL). Both were 0.8µ rad-hard SOI processes. Ho
these processes is rather low . In addition, they represent a
market, so the processes are expensive, poorly controlled, a
due to the limited market size.

•BTeV switched to the alternative deep-submicron path about
ATLAS has switched this year, and CMS is likely to switch n

•The advent of accessible (available to small-scale customers
engineering runs) 0.25µ CMOS processes has changed eve
processes, with a gate oxide thickness of 5-6nm, show the v
shifts expected when quantum effects allow almost all of the
created in the MOS gate oxide by irradiation to tunnel out ve
of order 50mV are observed after doses of 30MRad, far lowe
the traditional rad-hard processes.

•To reap the benefits of the rad-hard gate oxide in 0.25µ proce
to follow some special layout rules, in particular to make onl
prevent any leakage path between drain and source), and to
NMOS from each other. These rules do affect the designs, f
larger NMOS than usually needed (increased power consum
spikes), and preventing the use of small W/L NMOS in analo
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•These processes are very high-volume commercial products
cheap and highly stable and reproducible. The smaller featu
much more compact designs, even using the rad-tolerant la

•Comparison of recent ATLAS front-end+control designs in D

•Small 25µx50µ region on the left contains 10 SEU-tolerant la
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•Greatest design challenges are in front-end. To operate effec
sensor lifetime, need 3-4Ke thresholds. For these thresholds
be associated with the correct beam crossing, which require
maximum timewalk for LHC. The noise and threshold dispers
enough to allow operation with low noise occupancy at thes
ATLAS, the requirement is for the combined noise and dispe
400e. The total current budget for the analog front-end is typ
25µA per pixel, and achieving a 20-30ns peaking time with r
and low bias current is very challenging. In deep-submicron
power designs require operating essentially all transistors in
region, where they are exponentially sensitive to VT shifts a

•Significant issues arise in trying to prevent coupling between 
the back-end of each pixel and the preamplifier in the front-e
Depending on the bump-bonding technology, the sensor ha
implant that sits 8-20µ away from the electronics which trave
digital back-end to the pixel analog front-end. Present chips
shield the sensor from any digital pick-up by carefully coveri
circuitry with as much metal as possible. Although deep-sub
have many more metal layers, and provide stacked vias, the
maximum fill fractions in any given layer, so a complete shie
layers to implement.
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•To construct complete modules requires a whole chipset. Fo
there is the front-end chip (16 per module), there is the mod
(one per module), and there are two chips to support the opt
DORIC, one or two VDC per module). This requires signific
resources.

•Chips from a recent ATLAS DMILL engineering run are show

•Distance to nearest elements in power supply system (e.g. r
large (10m in ATLAS), requiring careful power management
decoupling and transient clamping inside chips, high-density

FE-D2
MCC-D2

DO
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Interconnections:
•In hybrid pixels, major interconnection problem is bump-bond

detector designs rely on 50µ pitch, which is very demanding
are willing to do this, and they are not large, commercial firm
of Seiko who provided excellent prototypes before the servic

•Connecting chips within a module, including power distributio
bussing, is challenging. Present designs use Kapton hybrids
base material with 25µ cover layers, and about 15-20µ of C
cope with 1A current distribution with modest (50-100mV) v

•Achieving full coverage in each pixel layer, despite large dea
chip which is allocated to buffering and housekeeping functio
requires large overlaps and very tight mechanical tolerance
are mounted with 1mm clearances, and module envelopes t
components in many regions of Flex Hybrid. The large overla
material budget significantly.

•Bringing large amounts of current into and out of small pixel 
without introducing excessive heat or excessive material is c
must be made from Aluminum twisted pair, and any optimiza
material and power disssipation. In ATLAS, dissipate about 
of services. Making high quality connections with Aluminum 
challenging. ATLAS is investigating “micro-welding” techniqu
devices, in which wire-bonding is done with several hundred
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Mechanics/Cooling
•Complete detector will dissipate 5-10KW in the tracker itself,

in the services. In ATLAS, dissipate about 10KW in tracker a
before reaching the first major patchpanels at 10m from det

•Pixel modules present an area load, and heat needs to be co
pipes by material with high thermal conductivity in all directi
also must have a low CTE to avoid introducing large stresse
modules over roughly 50C operating temperature range (+2
has chosen carbon-carbon material.

•Pixel modules themselves have materials with varying CTE, 
avoid attachment procedure introducing shear stress on the

•Using a pure liquid cooling system requires significant amou
pipes, adding to the material budget. ATLAS has chosen ev
fluorocarbon cooling to provide cooling margin and very low
have only fluid film inside cooling pipes, which evaporates an
provide cooling).

•Need extremely low mass mechanical and cooling system, w
modules to about 10µ, and yet will also support services for 4
Structure must have very low CTE to allow tracking module 
thermal cycling from 25C assembly temperature down to -2
temperature for local supports.
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Future Directions
There will be upgrades to detectors discusse

•Physics performance for b-tagging dominated by efficiency, m
resolution in the innermost layer for LHC pixel detectors.

•The relatively small area of this layer (for example, 0.25m2 in
upgrades feasible, and highly desirable given rate of techno
Expect an upgrade of innermost layer within about 3 years o

•In areas of mechanics and sensors, do not expect major tech

•Exception could be the use of alternate substrates such as C

Prototypes have worked  to fluences beyond  1015 n equival
silicon signal deteriorates to the same value as the best diam
far). Major advantage could be lack of leakage current, with
for sub-zero operation. However, rate of technological progr

lifetimes of order 1015 n equivalent in any case.

•Possibility of LHC machine upgrade to some multiple of 1034

time (10-15ns ?). This might occur in 2012 or so, and  would
significant upgrade of complete tracking systems. Demands
would be extreme, perhaps increase of 2-3 in occupancy an
damage. Early studies of physics issues underway, and sug
luminosity only really interesting if detector capabilities stay 
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Electronics:
•Present expectation with electronics built using 0.25µ proces

roughly 50-100MRad. This is a good match to the lifetime of

•Expected timing for an upgrade would be installation in 2009
timescale relevant for producing this electronics, many comm
will be using a 0.13µ 8-metal or 0.10µ 9-metal CMOS proce

•This significant change could allow a factor 4-5 reduction in 
significant increase in the functionality of a given pixel. How
technological issues to study, including whether Single Even
begin to play a role in the lifetime of the electronics.

•Matching and other analog design issues often prevent signi
analog designs with feature size. With increased digital cap
tend to cope with less-than-ideal analog performance using

•Such processes will have gate oxide thickness of 2-3nm. Be
quantum tunneling induces very large leakage currents, wh
approaches to analog design.

•The supply voltage will be 1.0-1.3V, reducing the dynamic ra
factor of two. The threshold voltage will only decrease from t
about 350mV, so the ratio of supply to threshold voltage is d
This affects the speed of digital circuits, and more importantl
of analog circuits.
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Interconnections:
•Size of modules, and therefore all mechanics issues, are dri

FE chip size. As industry moves into 300mm and then 450m
per unit area, and yield, of die will continue to improve. It mi
to build much larger chips, with a more favorable active to to
could potentially simplify the mechanics and reduce the ove

•Use of fine pitch bump-bonding is not presently commercial 
should improve over the next few years as mainstream indu
possible that one could achieve 25-30µ pitches with non-co

•Present approach to module design based on Kapton hybrid 
components with large numbers of wire-bonds is very labor
to highly fragile modules.

•Commercial electronics will soon be driving interconnect tech
where they should be more useful for us. This might allow u
completely industrial production of pixel modules that are hi

•Already some experience in this direction due to exploration
technology by ATLAS. This uses deposition of thin multi-laye
sensors using 50µ pitch via and trace technology based on 
Technology still too experimental for production use, but this
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Summary
•Pixelated silicon detectors based on hybrid designs appear t

technology for tracking in high luminosity hadron colliders.

•This type of detector is in its infancy, with no complete detec
hadron collider experiments yet.

•Such detectors are inherently somewhat massive due to the n
amounts of heat generated over large areas, and the servic
power into and out of the detectors.

•The performance of pixel detectors is very strongly driven by

•With the advent of rad-tolerant layout for commercial deep-s
we can build rad-hard electronics which is in the mainstream
us to follow “Moore’s law” and benefit from these extraordina
advances. However, we should not forget that no large scale
approach is yet operating in an experiment.
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